浏览全部资源
扫码关注微信
1.广东药科大学 药学院,广州 510006
2.广东药科大学 生命科学与生物制药学院,广州 510006
3.广州中医药大学 基础医学院,广州 510006
邱文可,在读硕士,从事细胞分子病理学研究,Tel:020-39352194,E-mail:2428433082@qq.com
李明,博士,副教授,从事细胞分子病理学研究,Tel:020-39352194,E-mail:lim99011@gdpu.edu.cn
收稿日期:2021-11-11,
网络出版日期:2022-02-21,
纸质出版日期:2022-04-05
移动端阅览
邱文可,梁洪梅,李岩等.基于网络药理学探讨验证白藜芦醇抗NAFLD作用[J].中国实验方剂学杂志,2022,28(07):172-178.
QIU Wen-ke,LIANG Hong-mei,LI Yan,et al.Molecular Mechanism of Resveratrol Against NAFLD Based on Network Pharmacology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(07):172-178.
邱文可,梁洪梅,李岩等.基于网络药理学探讨验证白藜芦醇抗NAFLD作用[J].中国实验方剂学杂志,2022,28(07):172-178. DOI: 10.13422/j.cnki.syfjx.20220417.
QIU Wen-ke,LIANG Hong-mei,LI Yan,et al.Molecular Mechanism of Resveratrol Against NAFLD Based on Network Pharmacology[J].Chinese Journal of Experimental Traditional Medical Formulae,2022,28(07):172-178. DOI: 10.13422/j.cnki.syfjx.20220417.
目的
2
基于网络药理学、分子对接技术预测白藜芦醇抗非酒精性脂肪性肝病(NAFLD)的分子机制,并根据结果在细颗粒物(PM2.5)染毒的肝细胞模型中进行验证。
方法
2
首先通过中药系统药理学数据库和分析平台(TCMSP)、PubChem、DrugBank、SwissTargetPrediction数据库获取白藜芦醇相关靶点,与毒性与基因比较数据库(CTD)、疾病相关的基因与突变位点数据库(DisGeNET)、GeneCards、人类孟德尔遗传病数据库(OMIM)数据库中筛选得到的NAFLD靶点取交集,然后利用STRING 11.5平台构建交集靶点的蛋白互作网络图。根据Cytoscape 3.8.2软件制作靶点-通路图并分析筛选出核心模块及靶点,通过Metascape平台对交集靶点进行基因本体(GO)及京都基因和基因百科全书(KEGG)富集分析,并利用SYBYL-X 2.0软件对白藜芦醇与核心靶点进行分子对接分析。最后采用流式细胞术和蛋白免疫印迹法(Western blot)检测PM2.5染毒人肝细胞系(HepG2)的凋亡变化及凋亡相关蛋白的表达。
结果
2
共获取白藜芦醇与NAFLD交集靶点115个,核心靶点主要包括肿瘤坏死因子(TNF)、B细胞淋巴瘤-2(Bcl-2)和胱天蛋白酶-3(Caspase-3)等。KEGG通路富集分析得174条通路,主要涉及细胞凋亡、TNF等通路。分子对接结果表明白藜芦醇与核心靶点Bcl-2、Caspase-3均有良好结合活性。流式细胞术以及Western blot结果显示白藜芦醇通过影响Bcl-2、Caspase-3蛋白的表达抑制PM2.5引起的肝细胞凋亡。
结论
2
白藜芦醇抗NAFLD具有多通路、多靶点的特点,通过影响Bcl-2、Caspase-3靶点抑制肝细胞凋亡是其作用的重要途径,为后续研究白藜芦醇抗NAFLD的作用机制提供了理论依据。
Objective
2
To predict the molecular mechanism of resveratrol against non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and molecular docking and verify the results on the liver cell model induced by PM2.5 exposure.
Method
2
The targets of resveratrol were screened out from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), PubChem, DrugBank, and SwissTargetPrediction, and the potential targets of NAFLD were retrieved from Comparative Toxicogenomics Database (CTD), DisGeNET, GeneCards, and Online Mendelian Inheritance in Man (OMIM). Then the common targets were obtained. STRING 11.5 was used to construct the protein-protein interaction (PPI) network of the common targets. Cytoscape 3.8.2 was used to plot the “target-pathway” network, and the core modules and key targets were selected. Metascape was adopted for Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses of common targets. SYBYL-X 2.0 was used for molecular docking of resveratrol to key targets. Finally,cell apoptosis and the expression of apoptosis-related proteins were detected by flow cytometry and Western blot in the PM2.5-exposed human liver cell line (HepG2).
Result
2
A total of 115 common targets of resveratrol and NAFLD were obtained. The key targets included tumor necrosis factor (TNF), B-cell lymphoma-2 (Bcl-2), and cysteinyl aspartate-specific protease-3(Caspase-3). As revealed by KEGG enrichment analysis, 174 signaling pathways, represented by the apoptosis and TNF signaling pathways, were obtained. Molecular docking results showed that resveratrol had strong binding activities to Bcl-2 and Caspase-3. Furthermore,the results of flow cytometry and Western blot demonstrated that resveratrol inhibited cell apoptosis of PM2.5-exposed HepG2 cells by regulating the protein expression of Bcl-2 and Caspase-3.
Conclusion
2
Resveratrol can treat NAFLD in a multi-pathway and multi-target way. It mainly inhibits liver cell apoptosis by affecting the expression of Bcl-2 and Caspase-3, which provides a theoretical basis for the follow-up research on the anti-NAFLD mechanism of resveratrol.
STEFAN N , HÄRING H U , CUSI K . Non-alcoholic fatty liver disease: Causes,diagnosis,cardiometabolic consequences,and treatment strategies [J]. Lancet Diabetes Endocrinol , 2019 , 7 ( 4 ): 313 - 324 .
SUN S , YANG Q , ZHOU Q , et al . Long-term exposure to fine particulate matter and non-alcoholic fatty liver disease: A prospective cohort study [J]. Gut , 2022 , 71 ( 2 ): 443 - 445 .
谢菁菁 , 邝俊侠 , 王婴 , 等 . PM2.5对HepG2细胞脂质堆积影响及机制研究 [J]. 环境与健康杂志 , 2015 , 32 ( 6 ): 509 - 512,565 .
HEEBøLL S , THOMSEN K L , PEDERSEN S B , et al . Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease [J]. World J Hepatol , 2014 , 6 ( 4 ): 188 - 198 .
HEEBØLL S , EL-HOURI R B , HELLBERG Y E , et al . Effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment [J]. J Gastroenterol Hepatol , 2016 , 31 ( 3 ): 668 - 675 .
KIBBLE M , SAARINEN N , TANG J , et al . Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products [J]. Nat Prod Rep , 2015 , 32 ( 8 ): 1249 - 1266 .
RU J , LI P , WANG J , et al . TCMSP: A database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform , 2014 , 6 : 13 - 18 .
KIM S , CHEN J , CHENG T , et al . PubChem 2019 update: Improved access to chemical data [J]. Nucleic Acids Res , 2019 , 47 ( D1 ): D1102 - D1109 .
WISHART D S , FEUNANG Y D , GUO A C , et al . DrugBank 5.0: A major update to the DrugBank database for 2018 [J]. Nucleic Acids Res , 2018 , 46 ( D1 ): D1074 - D1082 .
DAINA A , MICHIELIN O , ZOETE V . SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules [J]. Nucleic Acids Res , 2019 , 47 ( W1 ): W357 - W364 .
DAVIS A P , GRONDIN C J , JOHNSON R J , et al . Comparative Toxicogenomics Database (CTD): Update 2021 [J]. Nucleic Acids Res , 2021 , 49 ( D1 ): D1138 - D1143 .
PIÑERO J , RAMíREZ-ANGUITA J M , SAÜCH-PITARCH J , et al . The DisGeNET knowledge platform for disease genomics: 2019 update [J]. Nucleic Acids Res , 2020 , 48 ( D1 ): D845 - D855 .
STELZER G , ROSEN N , PLASCHKES I , et al . The GeneCards Suite: From gene data mining to disease genome sequence analyses [J]. Curr Protoc Bioinformatics , 2016 ,54:1.30. 1 - 1 .30.33.
CONSORTIUM U P . UniProt: The universal protein knowledgebase in 2021 [J]. Nucleic Acids Res , 2021 , 49 ( D1 ): D480 - D489 .
SZKLARCZYK D , GABLE A L , NASTOU K C , et al . The STRING database in 2021: Customizable protein-protein networks,and functional characterization of user-uploaded gene/measurement sets [J]. Nucleic Acids Res , 2021 , 49 ( D1 ): D605 - D612 .
ZHOU Y , ZHOU B , PACHE L , et al . Metascape provides a biologist-oriented resource for the analysis of systems-level datasets [J]. Nat Commun , 2019 , 10 ( 1 ): 1523 .
OTASEK D , MORRIS J H , BOUçAS J , et al . Cytoscape automation: Empowering workflow-based network analysis [J]. Genome Biol , 2019 , 20 ( 1 ): 185 - 199 .
BURLEY S K , BERMAN H M , BHIKADIYA C , et al . RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology,biomedicine,biotechnology and energy [J]. Nucleic Acids Res , 2019 , 47 ( D1 ): D464 - D474 .
LI S , XUE X , YANG X , et al . A network pharmacology approach used to estimate the active ingredients of moutan cortex charcoal and the potential targets in hemorrhagic diseases [J]. Biol Pharm Bull , 2019 , 42 ( 3 ): 432 - 441 .
但文超 , 何庆勇 , 曲艺 , 等 . 基于网络药理学的枳术丸调治血脂异常的分子机制研究 [J]. 世界科学技术—中医药现代化 , 2019 , 21 ( 11 ): 2396 - 2405 .
POVERO D , FELDSTEIN A E . Novel molecular mechanisms in the development of non-alcoholic steatohepatitis [J]. Diabetes Metab J , 2016 , 40 ( 1 ): 1 - 11 .
KANDA T , MATSUOKA S , YAMAZAKI M , et al . Apoptosis and non-alcoholic fatty liver diseases [J]. World J Gastroenterol , 2018 , 24 ( 25 ): 2661 - 2672 .
ZHANG R , ZHANG X , GAO S , et al . Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver [J]. Sci Total Environ , 2019 , 655 : 1334 - 1341 .
LAING S , WANG G , BRIAZOVA T , et al . Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues [J]. Am J Physiol Cell Physiol , 2010 , 299 ( 4 ): C736 - 749 .
凡治国 , 李志平 , 任超 . 干扰 β -catenin表达对淋巴瘤细胞增殖、凋亡及cleaved caspase 3蛋白表达水平的影响 [J]. 癌症进展 , 2019 , 17 ( 1 ): 101 - 104 .
WANG J , HAN H , CHEN X , et al . Cytotoxic and apoptosis-inducing activity of triterpene glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 cells [J]. Mar Drugs , 2014 , 12 ( 8 ): 4274 - 4290 .
SU W , ZHANG C , CHEN F , et al . Purple sweet potato color protects against hepatocyte apoptosis through Sirt1 activation in high-fat-diet-treated mice [J]. Food Nutr Res , 2020 , 64 : 1509 - 1522 .
0
浏览量
21
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构