浏览全部资源
扫码关注微信
中国中医科学院 中药研究所,北京 100029
林嘉伟,硕士,从事中药毒理研究,Tel:010-84252832-2231,E-mail:Jwlin730@163.com
朱晓新,博士,研究员,从事药理学研究,Tel:010-64093296,E-mail:xxzhu@icmm.ac.cn;
收稿日期:2022-10-14,
网络出版日期:2023-02-13,
纸质出版日期:2023-07-20
移动端阅览
林嘉伟,杨依霏,刘婷等.微流控肝、肾芯片在中药毒理研究中的应用[J].中国实验方剂学杂志,2023,29(14):272-282.
LIN Jiawei,YANG Yifei,LIU Ting,et al.Application of Microfluidic Liver and Kidney Chips in Toxicology Research of Chinese Medicine[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):272-282.
林嘉伟,杨依霏,刘婷等.微流控肝、肾芯片在中药毒理研究中的应用[J].中国实验方剂学杂志,2023,29(14):272-282. DOI: 10.13422/j.cnki.syfjx.20230407.
LIN Jiawei,YANG Yifei,LIU Ting,et al.Application of Microfluidic Liver and Kidney Chips in Toxicology Research of Chinese Medicine[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):272-282. DOI: 10.13422/j.cnki.syfjx.20230407.
微流控肝、肾芯片是近年来进行新药研发、药效毒理研究和机制探索、疾病模型构建的优选模型载体。在美国食品药品监督管理局允许当动物疾病模型难以构建时,用体外模型数据代替动物模型数据进行新药申报的大背景下,微流控芯片因为具有高通量、能高度仿生生命体特征、可方便进行重复给药的正常或病理状态下的药物毒性评价且允许对培养物培养过程进行实时诱导、监测过程数据实时采集分析等优点而得到广泛的关注。在毒理学研究中,肝、肾芯片可以通过结合不同物种来源的2D单培养和共培养、3D培养、球状体/类器官细胞、精密切割肝、肾切片、永生化细胞系或夹心培养细胞系等培养物,构建适合不同物质药效毒理学检测的体外模型。该模型最大化模拟或保留肝脏和肾脏的脏器功能和体内微环境,包括特定的生理组织结构、多细胞相互作用/串扰、多器官相互协作/反馈等,以得到与体内实验数据相近或相同的结果,减少了不同种属之间的差异;同时大大减少实验动物的使用,降低了成本。微流控技术提供的微流体不仅能为内容物培养提供必要的剪切力微环境,还能解决目前由于肝、肾芯片培养过程中组织供氧不足、营养物质的缺失、代谢物堆积,导致的细胞凋亡甚至组织坏死纤维化,难以长期维持结构和功能等问题。该文旨在对微流控技术结合肝脏芯片与肾脏芯片在中药毒理研究中的应用进行综述,通过梳理微流控技术、肝脏芯片、肾脏芯片的发展历程及微流控肝、肾芯片在中药毒理研究中的应用实例,结合中药给药特点探讨其在中药毒理研究领域的应用优势及未来发展方向。
Microfluidic liver and kidney chips have become preferred model carriers in recent years for new drug development, pharmacological and toxicological research, mechanism exploration, and disease model construction. In the context of the USA. Food and Drug Administration allowing the use of
in vitro
model data as a substitute for animal model data in new drug applications when animal disease models are difficult to construct, microfluidic chips have received widespread attention due to their high throughput, ability to highly mimic biological characteristics of living organisms, convenient evaluation of drug toxicity in normal or pathological states with repeated dosing, real-time induction and monitoring of culture processes, and real-time data acquisition and analysis. In toxicology research, liver and kidney chips can construct
in vitro
models suitable for the pharmacological and toxicological detection of different substances by combining 2D monocultures and co-cultures from different species sources, 3D cultures, spheroids/organoid cells, precision-cut liver and kidney slices, immortalized cell lines, or sandwich-cultured cell lines. This model maximally simulates or retains the organ function and
in vivo
microenvironment of the liver and kidney, including specific physiological tissue structures, multicellular interactions/crosstalk, and multi-organ coordination/feedback, to obtain results similar to or the same as
in vivo
experimental data, reducing interspecies differences. At the same time, it greatly reduces the use of experimental animals and lowers costs. Microfluidic technology provides necessary shear force microenvironments for the cultivation of contents and solves problems encountered in the cultivation process of liver and kidney chips, such as insufficient tissue oxygen supply, nutrient deficiencies, and accumulation of metabolites, leading to cell apoptosis and even tissue necrosis fibrosis, which make it difficult to maintain long-term structure and function. This article reviewed the application of microfluidic technology combined with liver and kidney chips in Chinese medicine toxicology research. By summarizing the development of microfluidic technology, liver chips, kidney chips, and providing application examples of microfluidic liver and kidney chips in Chinese medicine toxicology research, combined with the characteristics of Chinese medicine administration, the article explored the advantages and future development directions of their application in the field of Chinese medicine toxicology research.
YANG B , XIE Y , GUO M , et al . Nephrotoxicity and Chinese herbal medicine [J]. Clin J Am Soc Nephrol , 2018 , 13 ( 10 ): 1605 - 1611 .
彭朋 , 元唯安 . 中药药源性肝毒性的研究进展 [J]. 药物评价研究 , 2021 , 44 ( 8 ): 1783 - 1792 .
SHEN Q Q , WANG J J , ROY D , et al . Organic anion transporter 1 and 3 contribute to traditional Chinese medicine-induced nephrotoxicity [J]. Chin J Nat Med , 2020 , 18 ( 3 ): 196 - 205 .
方肇伦 . 微全分析系统—分析仪器的方向与前沿 [J]. 科学新闻 , 2001 ( 1 ): 7 - 8 .
RONALDSON-BOUCHARD K , TELES D , YEAGER K , et al . A multi-organ chip with matured tissue niches linked by vascular flow [J]. Nat Biomed Eng , 2022 , 6 ( 4 ): 351 - 371 .
MANZ A , GRABER N , WIDMER H Á , et al . Miniaturized total chemical analysis systems: A novel concept for chemical sensing [J]. Sens Actuators B Chem , 1990 , 1 ( 1/6 ): 244 - 248 .
MANZ A , HARRISON D J , VERPOORTE E M , et al . Miniaturization of chemical analysis systems-A look into next century's technology or just a fashionable craze? [J]. Chimia , 1991 , 45 ( 4 ): 103 .
MCDONALD J C , DUFFY D C , ANDERSON J R , et al . Fabrication of microfluidic systems in poly(dimethylsiloxane) [J]. Electrophoresis , 2000 , 21 ( 1 ): 27 - 40 .
THORSEN T , MAERKL S J , QUAKE S R . Microfluidic large-scale integration [J]. Science , 2002 , 298 ( 5593 ): 580 - 584 .
KHAMSI R . Labs on a chip: Meet the stripped down rat [J]. Nature , 2005 , 435 ( 7038 ): 12 - 13 .
AZIMI-BOULALI J , MADADELAHI M , MADOU M J , et al . Droplet and particle generation on centrifugal microfluidic platforms: A review [J]. Micromachines (Basel) , 2020 , 11 ( 6 ): 253 .
康维嘉 . 微流控芯片UV光固化微注射成型的实验研究与模拟 [D]. 北京 : 北京化工大学 , 2017 .
KYFFIN J A , SHARMA P , LEEDALE J , et al . Impact of cell types and culture methods on the functionality of in vitro liver systems-A review of cell systems for hepatotoxicity assessment [J]. Toxicol In Vitro , 2018 , 48 : 262 - 275 .
AZIZIPOUR N , AVAZPOUR R , ROSENZWEIG D H , et al . Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip [J]. Micromachines (Basel) , 2020 , 11 ( 6 ): 33 .
MOSCONA A . Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro [J]. Exp Cell Res , 1961 , 22 : 455 - 475 .
SUTHERLAND R M , MCCREDIE J A , INCH W R . Growth of multicell spheroids in tissue culture as a model of nodular carcinomas [J]. J Natl Cancer Inst , 1971 , 46 ( 1 ): 113 - 120 .
DURAND R E . Adriamycin: A possible indirect radiosensitizer of hypoxic tumor cells [J]. Radiology , 1976 , 119 ( 1 ): 217 - 222 .
FENG H , OU B C , ZHAO J K , et al . Homogeneous pancreatic cancer spheroids mimic growth pattern of circulating tumor cell clusters and macrometastases: Displaying heterogeneity and crater-like structure on inner layer [J]. J Cancer Res Clin Oncol , 2017 , 143 ( 9 ): 1771 - 1786 .
ŠTAMPAR M , SEDIGHI FRANDSEN H , ROGOWSKA-WRZESINSKA A , et al . Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals [J]. Sci Total Environ , 2021 , 755 ( Pt 2 ): 143255 .
李朋彦 , 李春雨 , 陆小华 , 等 . 基于类器官3D培养和高内涵成像的药物肝毒性评价模型研究 [J]. 药学学报 , 2017 , 52 ( 7 ): 1055 - 1062 .
孙跃峰 , 江剑 , 王玲 , 等 . 体外三维培养技术在肿瘤中的应用及进展 [J]. 大连医科大学学报 , 2020 , 42 ( 2 ): 166 - 171 .
ZHAO S P , MA Y , LOU Q , et al . Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet array [J]. Anal Chem , 2017 , 89 ( 19 ): 10153 - 10157 .
JIA Z , CHENG Y , JIANG X , et al . 3D culture system for liver tissue mimicking hepatic plates for improvement of human hepatocyte (C3A) function and polarity [J]. Biomed Res Int , 2020 , 2020 : 6354183 .
COLTMAN N J , COKE B A , CHATZI K , et al . Application of HepG2/C3A liver spheroids as a model system for genotoxicity studies [J]. Toxicol Lett , 2021 , 345 : 34 - 45 .
YU F , CHOUDHURY D . Microfluidic bioprinting for organ-on-a-chip models [J]. Drug Discov Today , 2019 , 24 ( 6 ): 1248 - 1257 .
POWERS M J , DOMANSKY K , KAAZEMPUR-MOFRAD M R , et al . A microfabricated array bioreactor for perfused 3D liver culture [J]. Biotechnol Bioeng , 2002 , 78 ( 3 ): 257 - 269 .
VAN GRUNSVEN L A . 3D in vitro models of liver fibrosis [J]. Adv Drug Deliv Rev , 2017 , 121 : 133 - 146 .
MATAI I , KAUR G , SEYEDSALEHI A , et al . Progress in 3D bioprinting technology for tissue/organ regenerative engineering [J]. Biomaterials , 2020 , 226 : 119536 .
WANG X , YAN Y , PAN Y , et al . Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system [J]. Tissue Eng , 2006 , 12 ( 1 ): 83 - 90 .
MA X , QU X , ZHU W , et al . Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting [J]. Proc Natl Acad Sci U S A , 2016 , 113 ( 8 ): 2206 - 2211 .
LI Y , ZHANG T , PANG Y , et al . 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab [J]. Biofabrication , 2019 , 11 ( 3 ): 34102 .
DEWYSE L , REYNAERT H , VAN GRUNSVEN L A . Best practices and progress in precision-cut liver slice cultures [J]. Int J Mol Sci , 2021 , 22 ( 13 ): 7137 .
OTHMAN A , EHNERT S , DROPMANN A , et al . Precision-cut liver slices as an alternative method for long-term hepatotoxicity studies [J]. Arch Toxicol , 2020 , 94 ( 8 ): 2889 - 2891 .
KRUMDIECK C L , DOS SANTOS J E , HO K J . A new instrument for the rapid preparation of tissue slices [J]. Anal Biochem , 1980 , 104 ( 1 ): 118 - 123 .
SMITH P F , GANDOLFI A J , KRUMDIECK C L , et al . Dynamic organ culture of precision liver slices for in vitro toxicology [J]. Life Sci , 1985 , 36 ( 14 ): 1367 - 1375 .
DE GRAAF I A , OLINGA P , DE JAGER M H , et al . Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies [J]. Nat Protoc , 2010 , 5 ( 9 ): 1540 - 1551 .
WU X , ROBERTO J B , KNUPP A , et al . Precision-cut human liver slice cultures as an immunological platform [J]. J Immunol Methods , 2018 , 455 : 71 - 79 .
PAISH H L , REED L H , BROWN H , et al . A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices [J]. Hepatology , 2019 , 70 ( 4 ): 1377 - 1391 .
VAN MIDWOUD P M , GROOTHUIS G M , MEREMA M T , et al . Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies [J]. Biotechnol Bioeng , 2010 , 105 ( 1 ): 184 - 194 .
VAN MIDWOUD P M , MEREMA M T , VERPOORTE E , et al . A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices [J]. Lab Chip , 2010 , 10 ( 20 ): 2778 - 2786 .
刘婷 , 杨依霏 , 夏冰 , 等 . 一种用于中药肝毒性评价的基于微流控体系的精密肝切片培养模型 : 中国 , CN114854585A [P]. 2022-09-30 .
ASHAMMAKHI N , WESSELING-PERRY K , HASAN A , et al . Kidney-on-a-chip: Untapped opportunities [J]. Kidney Int , 2018 , 94 ( 6 ): 1073 - 1086 .
VALVERDE M G , MILLE L S , FIGLER K P , et al . Biomimetic models of the glomerulus [J]. Nat Rev Nephrol , 2022 , 18 ( 4 ): 241 - 257 .
WATERS J P , RICHARDS Y C , SKEPPER J N , et al . A 3D tri-culture system reveals that activin receptor-like kinase 5 and connective tissue growth factor drive human glomerulosclerosis [J]. J Pathol , 2017 , 243 ( 3 ): 390 - 400 .
PETROSYAN A , CRAVEDI P , VILLANI V , et al . A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier [J]. Nat Commun , 2019 , 10 ( 1 ): 3656 .
ESSIG M , TERZI F , BURTIN M , et al . Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells [J]. Am J Physiol Renal Physiol , 2001 , 281 ( 4 ): F751 - 762 .
BAUDOIN R , GRISCOM L , MONGE M , et al . Development of a renal microchip for in vitro distal tubule models [J]. Biotechnol Prog , 2007 , 23 ( 5 ): 1245 - 1253 .
TUFFIN J , BURKE M , RICHARDSON T , et al . A composite hydrogel scaffold permits self-organization and matrix deposition by cocultured human glomerular cells [J]. Adv Healthc Mater , 2019 , 8 ( 17 ): e1900698 .
XIE R , KOROLJ A , LIU C , et al . h-FIBER: Microfluidic topographical hollow fiber for studies of glomerular filtration barrier [J]. ACS Cent Sci , 2020 , 6 ( 6 ): 903 - 912 .
WEINBERG E , KAAZEMPUR-MOFRAD M , BORENSTEIN J . Concept and computational design for a bioartificial nephron-on-a-chip [J]. Int J Artif Organs , 2008 , 31 ( 6 ): 508 - 514 .
JANG K J , SUH K Y . A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells [J]. Lab Chip , 2010 , 10 ( 1 ): 36 - 42 .
MUSAH S , MAMMOTO A , FERRANTE T C , et al . Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip [J]. Nat Biomed Eng , 2017 , 1 : 69 .
HOMAN K A , KOLESKY D B , SKYLAR-SCOTT M A , et al . Bioprinting of 3D convoluted renal proximal tubules on perfusable chips [J]. Sci Rep , 2016 , 6 : 34845 .
SINGH N K , HAN W , NAM S A , et al . Three-dimensional cell-printing of advanced renal tubular tissue analogue [J]. Biomaterials , 2020 , 232 : 119734 .
RAYNER S G , HOWARD C C , MANDRYCKY C J , et al . Multiphoton-guided creation of complex organ-specific microvasculature [J]. Adv Healthc Mater , 2021 , 10 ( 10 ): e2100031 .
ADHIKARI J , ROY A , DAS A , et al . Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks [J]. Macromol Biosci , 2021 , 21 ( 1 ): e2000179 .
SAITTA B , JALILI M F , ZOHOORKARI H , et al . Ex vivo kidney slice preparations as a model system to study signaling cascades in kidney epithelial cells [J]. Methods Cell Biol , 2019 , 153 : 185 - 203 .
BIGAEVA E , GORE E , MUTSAERS H , et al . Exploring organ-specific features of fibrogenesis using murine precision-cut tissue slices [J]. Biochim Biophys Acta Mol Basis Dis , 2020 , 1866 ( 1 ): 165582 .
KNOUZY B , DUBOURG L , BAVEREL G , et al . Targets of chloroacetaldehyde-induced nephrotoxicity [J]. Toxicol In Vitro , 2010 , 24 ( 1 ): 99 - 107 .
BAVEREL G , KNOUZY B , GAUTHIER C , et al . Use of precision-cut renal cortical slices in nephrotoxicity studies [J]. Xenobiotica , 2013 , 43 ( 1 ): 54 - 62 .
JENSEN M S , MUTSAERS H , TINGSKOV S J , et al . Activation of the prostaglandin E 2 EP 2 receptor attenuates renal fibrosis in unilateral ureteral obstructed mice and human kidney slices [J]. Acta Physiol (Oxf) , 2019 , 227 ( 1 ): e13291 .
李昕 , 王芷宁 , 付璐 , 等 . 缺血-再灌注氧化损伤机制及其对不同器官功能的影响 [J]. 中国比较医学杂志 , 2022 , 32 ( 7 ): 149 - 154 .
RUEGG C E , GANDOLFI A J , BRENDEL K . Preparation and incubation of precision-cut, positional renal slices [J]. Pharmacol Methods , 1987 , 17 : 111 - 123 .
POOSTI F , PHAM B T , OOSTERHUIS D , et al . Precision-cut kidney slices (PCKS) to study development of renal fibrosis and efficacy of drug targeting ex vivo [J]. Dis Model Mech , 2015 , 8 ( 10 ): 1227 - 1236 .
TIAN H , PANG J , QIN K , et al . A novel tissue-based liver-kidney-on-a-chip can mimic liver tropism of extracellular vesicles derived from breast cancer cells [J]. Biotechnol J , 2020 , 15 ( 2 ): e1900107 .
蔡乐 . 基于肝器官芯片的中草药成分肝毒性评价 [D]. 大连 : 大连理工大学 , 2019 .
JIANG P , ZHANG X , HUANG Y , et al . Hepatotoxicity induced by sophora flavescens and hepatic accumulation of kurarinone, a major hepatotoxic constituent of sophora flavescens in rats [J]. Molecules , 2017 , 22 ( 11 ): 1809 .
朱丽颖 , 杜宏英 , 何宇涵 , 等 . 基于生物打印3D细胞微流控芯片的常用中药注射液肝脏安全性再评价 [J]. 中南药学 , 2021 , 19 ( 11 ): 2304 - 2310 .
LI X , XUE X , LI P C . Real-time detection of the early event of cytotoxicity of herbal ingredients on single leukemia cells studied in a microfluidic biochip [J]. Integr Biol (Camb) , 2009 , 1 ( 1 ): 90 - 98 .
丛烨 , 王佑平 , 韩夏荷 , 等 . 用于药物毒性评价的微流控器官芯片技术 [J]. 世界中医药 , 2020 , 15 ( 23 ): 3536 - 3544 .
许贺然 . 一种肾微流控芯片的构建及应用 [D]. 大连 : 大连理工大学 , 2020 .
LI X , TIAN T . Phytochemical characterization of Mentha spicata L. under differential dried-conditions and associated nephrotoxicity screening of main compound with organ-on-a-chip [J]. Front Pharmacol , 2018 , 9 : 1067 .
CHANG S Y , WEBER E J , SIDORENKO V S , et al . Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity [J]. JCI Insight , 2017 , 2 ( 22 ): e95978 .
ZHOU M , ZHANG X , WEN X , et al . Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy [J]. Sci Rep , 2016 , 6 : 31771 .
WANG L , TAO T , SU W , et al . A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice [J]. Lab Chip , 2017 , 17 ( 10 ): 1749 - 1760 .
WANG J , WANG C , XU N , et al . A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions [J]. Biomaterials , 2019 , 219 : 119367 .
SERRAS A S , RODRIGUES J S , CIPRIANO M , et al . A critical perspective on 3D liver models for drug metabolism and toxicology studies [J]. Front Cell Dev Biol , 2021 , 9 : 626805 .
COLLETT S , TORRESI J , SILVEIRA L E , et al . Investigating virus-host cell interactions: Comparative binding forces between hepatitis C virus-like particles and host cell receptors in 2D and 3D cell culture models [J]. J Colloid Interface Sci , 2021 , 592 : 371 - 384 .
DIEKJüRGEN D , GRAINGER D W . Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model [J]. Pflugers Arch , 2018 , 470 ( 9 ): 1311 - 1323 .
MUGURUMA M , TERAOKA S , MIYAHARA K , et al . Differences in drug sensitivity between two-dimensional and three-dimensional culture systems in triple-negative breast cancer cell lines [J]. Biochem Biophys Res Commun , 2020 , 533 ( 3 ): 268 - 274 .
FOSTER A J , CHOUHAN B , REGAN S L , et al . Integrated in vitro models for hepatic safety and metabolism: Evaluation of a human liver-chip and liver spheroid [J]. Arch Toxicol , 2019 , 93 ( 4 ): 1021 - 1037 .
DEGUCHI S , TAKAYAMA K . State-of-the-art liver disease research using liver-on-a-chip [J]. Inflamm Regen , 2022 , 42 ( 1 ): 62 .
MEHTA V , PANG K L , ROZBESKY D , et al . The guidance receptor plexin D 1 is a mechanosensor in endothelial cells [J]. Nature , 2020 , 578 ( 7794 ): 290 - 295 .
SEYMOUR R S , HU Q , SNELLING E P . Blood flow rate and wall shear stress in seven major cephalic arteries of humans [J]. J Anat , 2020 , 236 ( 3 ): 522 - 530 .
BABALIARI E , PETEKIDIS G , CHATZINIKOLAIDOU M . A precisely flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering [J]. Bioengineering (Basel) , 2018 , 5 ( 3 ): 66 .
JIA L , WANG L , WEI F , et al . Effects of Caveolin-1-ERK1/2 pathway on endothelial cells and smooth muscle cells under shear stress [J]. Exp Biol Med (Maywood) , 2020 , 245 ( 1 ): 21 - 33 .
VAEZ S A , EBRAHIMI-BAROUGH S , SOLEIMANI M , et al . The cardiac niche role in cardiomyocyte differentiation of rat bone marrow-derived stromal cells: comparison between static and microfluidic cell culture methods [J]. Excli J , 2018 , 17 : 762 - 774 .
0
浏览量
40
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构