浏览全部资源
扫码关注微信
1.南京中医药大学,南京 210023
2.江苏康缘药业股份有限公司,江苏 连云港 222001
尹铭钶,在读硕士,从事中药制药研究,E-mail:1002892691@qq.com
王振中,研究员,硕士生导师,从事中药新药研发及应用研究,E-mail:kyyywzz@163.com
收稿日期:2023-01-30,
网络出版日期:2023-04-13,
纸质出版日期:2023-07-20
移动端阅览
尹铭钶,李良,吕耀中等.木蝴蝶醇提物对高尿酸血症小鼠的降尿酸及肾保护作用[J].中国实验方剂学杂志,2023,29(14):57-63.
YIN Mingke,LI Liang,LYU Yaozhong,et al.Effect of Alcohol Extract of Oroxylum indicum on Reducing Uric Acid and Protecting Kidney in Hyperuricemia Mice[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):57-63.
尹铭钶,李良,吕耀中等.木蝴蝶醇提物对高尿酸血症小鼠的降尿酸及肾保护作用[J].中国实验方剂学杂志,2023,29(14):57-63. DOI: 10.13422/j.cnki.syfjx.20230636.
YIN Mingke,LI Liang,LYU Yaozhong,et al.Effect of Alcohol Extract of Oroxylum indicum on Reducing Uric Acid and Protecting Kidney in Hyperuricemia Mice[J].Chinese Journal of Experimental Traditional Medical Formulae,2023,29(14):57-63. DOI: 10.13422/j.cnki.syfjx.20230636.
目的
2
建立高尿酸血症(HUA)体内模型,考察木蝴蝶醇提物(MHD-80)降尿酸及肾脏保护作用。
方法
2
采用氧嗪酸钾(350 mg·kg
-1
)及腺嘌呤(80 mg·kg
-1
)构建小鼠HUA体内模型评价MHD-80的降尿酸相关机制及肾功能保护作用,将70只雄性ICR小鼠随机分为正常组、模型组、别嘌呤醇组(5 mg·kg
-1
)、非布索坦组(5 mg·kg
-1
)、MHD-80低、中、高剂量组(3、6、12 mg·kg
-1
)7组,每组10只。除正常组,其余组均连续14 d灌胃氧嗪酸钾及腺嘌呤构建HUA模型。造模第8~14天,每组灌胃给予相应药物,每天1次,末次给药后1 h,摘眼球取血,并收集小鼠肾脏及肝脏组织。酶比色法检测血清中尿酸(UA)、尿素氮(BUN)、肌酐(Cr)水平及肝脏中黄嘌呤氧化酶(XO)活性,酶联免疫吸附测定法(ELISA)检测小鼠血清中肿瘤坏死因子-
α
(TNF-
α
)及白细胞介素-1
β
(IL-1
β
)含量,苏木素-伊红(HE)染色观察肾脏组织病理改变,蛋白免疫印迹法(Western blot)检测肾脏组织ATP结合盒转运蛋白G2(ABCG2)及葡萄糖易化转运蛋白9(GLUT9)蛋白表达水平。
结果
2
体内实验结果显示,与正常组比较,模型组小鼠血清中UA、Cr、BUN水平、炎症因子TNF-
α
、IL-1
β
及肝脏XOD活性明显升高(
P
<
0.05,
P
<
0.01),肾脏组织中GLUT9蛋白表达明显上调(
P
<
0.05),ABCG2蛋白表达明显下调(
P
<
0.05),肾脏出现明显损伤;与模型组比较,MHD-80中、高剂量组小鼠血清中UA、BUN、Cr、TNF-
α
、IL-1
β
水平及肝脏XOD活性有不同程度降低(
P
<
0.05,
P
<
0.01),MHD-80高剂量组的GLUT9蛋白表达显著下调(
P
<
0.01)、ABCG2蛋白表达明显上调(
P
<
0.05),MHD-80组肾损伤程度减轻。
结论
2
MHD-80具有一定的降尿酸、抗炎及抗肾损伤作用,其作用与抑制XOD活性、调节ABCG2及GLUT9尿酸转运蛋白表达有关。
Objective
2
To investigate the effect of alcohol extract of
Oroxylum indicum
(MHD-80) on reducing uric acid (UA) and protecting the kidney in the hyperuricemia (HUA) model
in vivo
.
Method
2
Potassium oxazine (350 mg·kg
-1
) and adenine (80 mg·kg
-1
) were used to construct an HUA model of mice
in vivo
to evaluate the mechanism related to UA reduction and the protective effect of renal function of MHD-80. Seventy male ICR mice were randomly divided into seven groups, including the normal group, model group, allopurinol group (5 mg·kg
-1
), febusotan group (5 mg·kg
-1
), and MHD-80 low-, medium-, and high-dose groups (3, 6, 12 mg·kg
-1
), with 10 in each group. Except for the normal group, the other groups were given intragastric administration of potassium oxazine and adenine for 14 consecutive days to establish the HUA model. On the 8
th
to 14
th
day after modeling, each group was given corresponding drugs by intragastric administration, once a day. 1 h after the last administration, blood was collected from the eyeballs, and kidney and liver tissues of mice were collected. Serum levels of UA, urea nitrogen (BUN), and creatinine (Cr) and liver activity of xanthine oxidase (XOD) were determined by enzyme colorimetry. Serum contents of tumor necrosis factor-
α
(TNF-
α
) and interleukin-1
β
(IL-1
β
) were determined by enzyme-linked immunosorbent assay (ELISA). Hematoxilin-eosin (HE) staining was used to observe the pathological changes in kidney tissues. The protein expression levels of ATP-binding box transporter G2 (ABCG2) and glucose-facilitating transporter 9 (GLUT9) in kidney tissues were detected by Western blot.
Result
2
In vivo
experiment shows that compared with the normal group, the serum levels of UA, Cr, BUN, inflammatory factors TNF-
α
, IL-1
β
, and liver XOD activity in the serum of mice in the model group were significantly increased (
P
<
0.05,
P
<
0.01), and the expression of GLUT9 in kidney tissues was significantly up-regulated (
P
<
0.05). ABCG2 protein expression was significantly down-regulated (
P
<
0.05), and renal injury was obvious. Compared with the model group, the levels of UA, BUN, Cr, TNF-
α
, IL-1
β
, and liver XOD activity in the serum of mice in the high-dose group of MHD-80 were decreased to different degrees (
P
<
0.05,
P
<
0.01), GLUT9 protein expression was significantly down-regulated (
P
<
0.01), ABCG2 protein expression was significantly up-regulated (
P
<
0.05) in the high-dose group of MHD-80, and the degree of renal injury was reduced.
Conclusion
2
MHD-80 has certain uric acid reduction, anti-inflammatory, and anti-renal injury effects, which are related to inhibiting XOD activity and regulating the expression of ABCG2 and GLUT9 uric acid transporter.
LIANG G , NIE Y , CHANG Y , et al . Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice [J]. Phytomedicine , 2019 , 59 : 152772 .
LEONCINI G , BARNINI C , MANCO L , et al . Uric acid lowering for slowing CKD progression after the CKD-FIX trial:A solved question or still a dilemma? [J]. Clin Kidney J , 2022 , 15 ( 9 ): 1666 - 1674 .
MALLAT S G , AL KATTAR S , TANIOS B Y , et al . Hyperuricemia, hypertension, and chronic kidney disease:An emerging association [J]. Curr Hypertens Rep , 2016 , 18 ( 10 ): 74 .
SHARAF EL DIN U , SALEM M M , ABDULAZIM D O . Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review [J]. J Adv Res , 2017 , 8 ( 5 ): 537 - 548 .
HUA J , HUANG P , ZHU C M , et al . Anti-hyperuricemic and nephroprotective effects of modified Simiao decoction in hyperuricemic mice [J]. J Ethnopharmacol , 2012 , 142 ( 1 ): 248 - 252 .
BENN C L , DUA P , GURRELL R , et al . Physiology of hyperuricemia and urate-lowering treatments [J]. Front Med (Lausanne) , 2018 , 5 : 160 .
PASCART T , RICHETTE P . Investigational drugs for hyperuricemia, an update on recent developments [J]. Expert Opin Investig Drugs , 2018 , 27 ( 5 ): 437 - 444 .
KHANNA D , FITZGERALD J D , KHANNA P P , et al . 2012 american college of rheumatology guidelines for management of gout. Part 1:Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia [J]. Arthritis Care Res (Hoboken) , 2012 , 64 ( 10 ): 1431 - 1446 .
SCHLESINGER N , PADNICK-SILVER L , LAMOREAUX B . Enhancing the response rate to recombinant uricases in patients with gout [J]. Bio Drugs , 2022 , 36 ( 2 ): 95 - 103 .
ZHANG R , ZHAN S , LI S , et al . Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice [J]. Food Funct , 2018 , 9 ( 11 ): 5778 - 5790 .
CHEN M , YE C , ZHU J , et al . Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia [J]. Front Cell Dev Biol , 2020 , 8 : 703 .
LALRINZUALI K , VABEIRYUREILAI M , JAGETIA G C . Investigation of the anti-inflammatory and analgesic activities of ethanol extract of stem bark of sonapatha oroxylum indicum in vivo [J]. Int J Inflam , 2016 , 2016 : 8247014 .
李楠楠 , 孟宪生 , 包永睿 , 等 . 木蝴蝶挥发性成分对H22荷瘤小鼠实体瘤抑制作用及其机制初步研究 [J]. 中国药理学通报 , 2017 , 33 ( 11 ): 1600 - 1605 .
CHEN G , TAN M L , LI K K , et al . Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice [J]. J Ethnopharmacol , 2015 , 175 : 14 - 20 .
国家药典委员会 . 中华人民共和国药典:一部 [M]. 北京 : 中国医药科技出版社 , 2020 : 66 .
WANG Z , SONG L , LI X , et al . Lactiplantibacillus pentosus P2020 protects the hyperuricemia and renal inflammation in mice [J]. Front Nutr , 2023 , 10 : 1094483 .
HUANG J , MA Z F , ZHANG Y , et al . Geographical distribution of hyperuricemia in mainland China:A comprehensive systematic review and meta-analysis [J]. Glob Health Res Policy , 2020 , 5 ( 1 ): 52 .
吴茵 , 白万军 , 魏欣 . 基于UPLC-Q-TOF-MS技术分析木蝴蝶中化学成分 [J]. 中国实验方剂学杂志 , 2019 , 25 ( 2 ): 196 - 200 .
陶桂祥 , 王永路 , 孙正海 , 等 . 木蝴蝶不同部位挥发油化学成分GC-MS分析 [J]. 云南农业大学学报:自然科学 , 2022 , 37 ( 3 ): 540 - 546 .
LI D Q , ZHAO J , LI S P . High-performance liquid chromatography coupled with post-column dual-bioactivity assay for simultaneous screening of xanthine oxidase inhibitors and free radical scavengers from complex mixture [J]. J Chromatogr A , 2014 , 1345 : 50 - 56 .
CUI D , LIU S , TANG M , et al . Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption [J]. Phytomedicine , 2020 , 66 : 153111 .
施琬 , 李钟 , 顾祖莲 , 等 . 虎杖-桂枝药对配伍对大鼠慢性高尿酸血症和肾、肠尿酸转运体表达的影响 [J]. 中国实验方剂学杂志 , 2016 , 22 ( 2 ): 107 - 112 .
CHAU Y T , CHEN H Y , LIN P H , et al . Preventive effects of fucoidan and fucoxanthin on hyperuricemic rats induced by potassium oxonate [J]. Mar Drugs , 2019 , doi: 10.3390/md17060343 http://dx.doi.org/10.3390/md17060343 .
白莉 , 刘广运 , 张晓萍 , 等 . 牡丹花总黄酮对高尿酸血症大鼠降尿酸作用 [J]. 中国实验方剂学杂志 , 2022 , 28 ( 18 ): 38 - 45 .
ZHANG Y , JIN L , LIU J , et al . Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia [J]. J Ethnopharmacol , 2018 , 214 : 29 - 36 .
WEN S , WANG D , YU H , et al . The time-feature of uric acid excretion in hyperuricemia mice induced by potassium oxonate and adenine [J]. Int J Mol Sci , 2020 , doi: 10.3390/ijms21155178 http://dx.doi.org/10.3390/ijms21155178 .
张明昊 , 杜婧雯 , 张童 , 等 . 萆薢分清丸通过调控尿酸盐转运蛋白表达水平干预高尿酸血症大鼠的作用机制 [J]. 中国实验方剂学杂志 , 2023 , 29 ( 3 ): 1 - 8 .
CHANG Y H , CHIANG Y F , CHEN H Y , et al . Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway [J]. Antioxidants (Basel) , 2021 , doi: 10.3390/ANTIOX10040564 http://dx.doi.org/10.3390/ANTIOX10040564 .
0
浏览量
39
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构